SUBJECT: <u>HTW – BCT Meeting</u> <u>August 17, 2010</u> 1:30 p.m. BRAC Conference Room

Michael Taraczki	Marc Edwards	EM Ed Ticken	Eric Schmidt	Jen Moser	David Kelly	Peter Kelsall	Mark Eldridge	David Eisen	Rob Robinson)) Bill Collins	Derek Lieberman	Gail Youngblood	البنام Bill Mabey	Grant Himebaugh	Lewis Mitani	Martin Hausladen	Steve Sterling	Ogo OK Franklin Mark	✓ Name
MACTEC E&C	COE	MACTEC E&C	Shaw E&I	GEM/Shaw E&I	Shaw E&I	Shaw E&I	AEC	COE	Fort Ord BRAC	Fort Ord BRAC	Ahtna	Fort Ord BRAC	TechLaw Inc	RWQCB	U.S. EPA	U.S. EPA	DTSC	DTSC	Organization
510/628-3222	831/242-4828	707/793-3882	831/883-5809	831/883-5812	925/288-2321	831/883-5810 ext. 810	410/436-6325	831/393-9692	831/242-7900	831/242-7920	831/242-4873	831/242-7918	415/281-8730	805/542-4636	415/972-3032	415/972-3007	916/255-3739	916/255-3584	Phone
mdtaraski@mactec.com	Marc.A.Edwards@usace.army.mul	ejticken@mactec.com	Eric.Schmidt@shawgrp.com	Jen.moser@shawgrp.com	David.kelly@shawgrp.com	Peter.Kelsall@shawgrp.com	Mark.h.eldridge@us.army.mil	David.Eisen@usace.army.mil	clinton.w.robinson@us.army.mil	William.K.Collins@us.army.mil	dlieberman@ahtnaes.com	gail.youngblood@us.army.mil	bmabey@techlawinc.com	Ghimebaugh@waterboards.ca.gov	Mitani.lewis@epa.gov	Hausladen.martin@epamail.epa.gov	SSterlin@dtsc.ca.gov	FMark@dtsc.ca.gov	E-mail address

SUBJECT: <u>HTW – BCT Meeting</u> <u>August 17, 2010</u> 1:30 p.m. BRAC Conference Room

Former Fort Ord Groundwater Treatment Systems **Operational Data and Status**

BRAC Cleanup Team Meeting, August 17, 2010

Table 1: OU2 and Sites 2/12 GWTP Treatment Statistics, as of July 31, 2010.

426.37			1.354 billion	Total since June 1999
0.84	99.9	217	9,695,900	July 2010
		Sites 2/12	S	
660.90			4.934 billion	Total since October 1995
2.76	99.9	784	35,015,230	July 2010
		OU2		
COC Mass Remoxed (lbs.)	Percent of Time Online	Average Flow (gallons per minute)	Volume Treated (gallons)	Monthly Statistics

Table 2: OU2 and Sites 2/12 GWTP Calendar of Events, as of July 31, 2010.

25	18	11	4		the person Sunday	
26	19	12	5		e 26 USAN rail attention of Monday	
27	20	13	6		of the Senior of Tuesday	Key Events
28	21	Shoppette wells down for 16 hours due to condensate buildup in leak detection pipe.	7		the personal attention of the Senior GWTP Operator. Sunday Monday Tuesday Wednesday Thursday Friday Satur	Key Events for OU2 and Sites 2/12 for July 2010
29	22	15	8	1	Thursday	12 for July 2
30	23 Video logging of EW-OU2-11-A.	16	9 Power outage, OU2 and 2/12 GWTPs down 0.75 hours.	2	Friday	2010
31	24	17	10	3	Saturday	

Table 3: July 2010 - OU2 Analytical Results at TS-OU2-INJ

												_
Vinyl Chloride	TCE	PCE	Methylene Chloride	cis-1,2-DCE	Chloroform	Carbon Tetrachloride	Benzene	1,2-DCP	1,2-DCA	1,1-DCA	COC	
0.10	0.50	0.50	0.50	6.0*	2.0*	0.50	0.50	0.50	0.50	5.0*	(ug/L)	Discharge Limit
ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7/20/10	Samile Date Analytical Results

Table 4: July 2010 - Sites 2/12 Analytical Results at TS-212-INJ

Vinyl Chloride	TCE	PCE	cis-1,2 DCE	Chloroform		1,2-DCA	1,1-DCE	COC D
0.10	5.0	3.0	6.0.	2.0	0.50	0.50	6.0	scharge Limit (μg/L)‡
		Freedomming with an betretimen in trubane	or it sampling was performed in August	In accordance with the sampling schedule in the SAF, no				Sample Date / Analytical Results

NOTES:

- ND The analyte was not detected above the limit of quantitation.
- Discharge limits for low carbon affinity compounds were increased to the Aquifer Cleanup Level (ACL).
- ‡ Discharge limits are the ACLs for injection over the plume.
- † The reported value is the sum of both cis- and trans-isomers

Table 5: AES Document Submittals - Status Summary

	200000000000000000000000000000000000000
Final Annual Groundwater Treatment Systems Operation Data Summary Report, January through December 2009, Operable Unit 2 and Sites 2 and 12 Groundwater Remedies, Former Fort Ord, California	Досиме ли
July 30, 2010	Submitted

Ahtna Engineering

Table 6: July 2010 OU2 and Sites 2/12 Extraction Well Status (as of July 31)

		100.0	35,015,230	200	allons t	Total OU2 gallons treated:
		6.7	2,361,000	racted:	llons ext	Total gallons extracted:
0.90		6.7	2,361,000	52.9	98.4	EW-OU2-08-180
3.5	No pump in well, sampled with PDB	0	0	0	0	EW-OU2-07-180
		12.6	4,396,000	racted:	llons exi	l otal gallons extracted: Bunker Hill
N	Well offline due to low concentrations	0	0	0	0	EW-OU2-04-180
30.0		12.6	4,396,000	98.5	99.3	EW-OU2-03-180
			-)			Landfill
		20	1.022.100	racted:	llons exi	Total gallons extracted:
Not Sampled	Well offline due to low concentrations	0	0	0	0 5	EW-0U2-15-A
		3 O C	1 022 100	220	100	EW-0112-14-A
		37.1	12,974,300	tracted:	llons exi	Total gallons extracted:
10.8	High drawdown, operating with new level settings	2.5	867,300	19.4	97.3	EW-0U2-16-A
5.3		16.9	5,912,600	132.5	97.3	EW-OU2-06-180
5.7		17.7	6,194,400	138.8	97.3	EW-OU2-05-180
						Shoppette
		23.6	4,895,300	tracted:	llons ex	Total gallons extracted:
9.5		15.1	5,298,480	118.7	99.6	EW-OU2-02-180
11.1	8	3.6	1,253,880	28.1	100	EW-0U2-13-A
9.1	Low yield: running at reduced capacity	0	680	0	0.4	EW-0U2-12-A
Not Sampled	Pump removed due to biofouling, screen damaged	0	0	0	0	EW-0U2-11-A
Not Sampled	Pump motor failure	0.1	30,060	0.7	22.5	EW-OU2-10-A
3.0	Cleaning and to to a state to tot	2.6	904.840	20.3	77.6	EW-0U2-09-A
0.56	Cycling due to low water level	2.3	788.840	17.7	82.8	EW-0U2-08-A
ND	Well offline due to low concentrations	0	0	0	0	EW-0U2-07-A
						Eastern Network
	A TO PERSON TO AND TO PASS OF TAXABLE AND TO	171	5 973 290	tracted:	llons ex	Total gallons extracted:
7.8	No numn in well, sampled with PDRs	0	0 0000	0	0	EW-0U2-01-180
4 9		47	1 655 310	37 1	99 8	EW-0172-06-A
3.3		6.4	2,077,100	50.5	90.0	EW-0172-05-A
0.49	Well offline due to low concentrations, sampled with PDBs	, 0	2 077 160	16.50	0 0	EW-002-03-A
0.77	Well offline due to low concentrations		11,760	0.3	6.8	EW-OUZ-02-A
Not Sampled	Well offline due to low concentrations	0	0	0	0	EW-0U2-01-A
						Western Network
	ction Wells	J2 Extra	0U2			
	经基	0.00L	9,695,900	treated;	gallons	Total 2/1/2) gallons treated: 9/695/900 110000
0 69	Pumn removed sampled with PDRs	0	O		0	FW-12-04-180M
0.37	Well offline due to low concentrations	0	0	0	0	EW-12-04-180U
1.4		25.0	2,420,600	54.2	91.7	EW-12-03-180M
0.12	Well offline due to low concentrations	0	0	0	0	EW-12-03-180U
5.4		1.4	136,900	3.1	8.0	EW-12-07-180M
8.4		36.8	3,563,700	79.8	100	EW-12-06-180M
4.6			3,574,700	80.1	99.9	EW-12-05-180M
-	12 Extraction Wells		Site			
16E (ug/E) 20/2010	Comments	% 01 Total	Gallons	gpm	% On	Well Identification
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			THE PASSES	

I.S. Army Community Outreach Update

Actions Underway:

- BCT review of letter/update/fact sheet to be distributed to Monterey Bay Estates II residents. Purpose of groundwater investigation and cleanup. notification is to discuss results (non-detect) from monitoring well 94 and overall results of off-site Operable Unit 1
- BCT to discuss request by Marina in Motion (TAG in process) for regular updates
- ω Several requests for coordination and information from Marina in Motion.
- 4 Revising database to show Prescribed Burn Direct Notification enrollment over the last 3 years and observe trends.
- Provide summary of CSUMB's prescribed burn outreach methods to BCT.
- Part of semi-annual update for Army database (AEDB-R): forward BCP abstract to BCT for review

Recent Activities:

- August 13 Provided annual UXO safety briefing for York School.
- 5 August 9 Conducted focused Fort Ord cleanup tour for Honorable Katherine Hammack, Assistant Secretary of the Army, Installation and Environment (OASA I&E).
- July 22 Conducted prescribed burn briefings for officials at California State University Monterey
- Attended Superfund JTI candidates' workshop: July 27th (Seaside, evening) and 28th (Salinas, morning)
- œ July 28: Provided Prescribed Burn presentation at the Fort Ord Reuse Authority user's group meeting
- July 28: Provided Prescribed Burn presentation at the Fire Chief's meeting.
- 10. Ongoing: enroll participants in the prescribed burn Direct Notification Program. 350 enrolled as of August 9th.
- 11. Updated Fort Ord cleanup sections of California State University Monterey Bay web site.
- 12. Completed work on interactive map for web site (per Fort Ord Environmental Justice Network comments/requests)
- Completed BCT review of Public Notice for OU1 ESD to be published in Herald and Californian on August 20, 2010.

Upcoming Activities

- Conduct Fort Ord Cleanup tour for staff at Monterey County Health Department (TBD).
- 2 September 3: Participate in an information booth at the Monterey County Fair.
- September 30: FORA ESCA Informal Community Workshop
- 4 Schedule for Super JTI
- Two Stakeholder Meetings: July 13-14 (completed)
- Five Candidate Orientations: July 28-29, August 5 (completed)
- Document Submission: August 16 (125 people eligible for this process)
- **Evaluator Orientation: August 17**
- Tryouts: August 18-19
- Training Begins: August 30

Topics of Interest
Super JT1
USEPA TAG
Prescribed Burn Outreach
UXO Survey
Ted May

Fort Ord BCT Meetings August 18, 2010

U.S. Army Outreach Activities/Status Report

STATUS: RESPONSE to COMMUNITY COMMENTS (RTC)

		P.
AR	Title/Subject	Status
Number		
OE-0714.3,	Comments submitted by community group - Fort Ord Community	RTC is complete and in the Draft Final. (OE-0714A,
6/5/10	Advisory Group on the Draft Track 2 Del Rey Oaks Remedial	
ESCA-0249.5,	Comments submitted by Mike Weaver of FOCAG on the Draft Group 3	RTC is in progress—FSCA Program
6/10/10	RI/FS Report, Del Rey Oaks / Monterey, Laguna Seca Parking, and	
	Military Operations in Urban Terrain Site MRAs, FORA ESCA Remediation	
	Program	
IAFS-235E.3,	Comments from Mike Weaver [Fort Ord Community Advisory Group]	RTC is in progress.
1/15/10	on the Draft Final Work Plan, Historical Area 161 Excavation, Inter-	Part 1: Initial response complete: a letter to
	Garrison Training Area, Former Fort Ord, California	CAG noting that we are preparing
		report/documents that will response to these
		comments/questions (IAFS-235E.4, 5/4/10).
		Part 2: Issue draft CWM report-Summer
		The initial letter is in the Administrative Record
		and report, when ready, will also be included in
		the Administrative Record.
0U1-575.2,	Comments submitted by Mike Weaver on the Draft 2009 Annual and	The RTC is complete and in the Final document.
4/12/10	Third Quarter Groundwater Monitoring Report, Operable Unit 1,	(OU1-575.4, 8/9/10)
	Fritzsche Army Airfield Fire Drill Area, Former Fort Ord, California	
OE-0712.3,	Comments submitted by the Fort Ord Community Advisory Group on	The RTC is complete and included in the Draft
4/23/10	the Draft Prescribed Burn 2009 MRS-BLM Units 14 and 19 After	Final document. (OE-0712B, 7/23/10).
	Action Report, Former Fort Ord, Monterey County, California	
OUCTP-	Comments from Mike Weaver [Fort Ord Community Advisory Group]	The RTC is complete and included in the Final
0036N.4,	on the Draft Work Plan, Operable Unit Carbon Tetrachloride Upper	document (OUCTP-0036P, 7/9/10).
5/20/10	180' Aquifer, Former Fort Ord, California	

Status Update OU2 Landfills 08/17/2010

Ongoing Documents

Issue 2009 Annual OU2 Landfills Report for USACE review

Recently Completed Activities

Phases 1 and 2 vegetative layer removal at Area E as part of Range Remediation

Planned and Ongoing Activities

- Implement erosion control measures, as needed
- Haul and place soil from Site 39 Range Remediation at Area E vertical expansion Conduct Annual TTU Source Testing Conduct Annual VOC sampling

- Conduct Quarterly TTU maintenance/inspection Conduct Quarterly methane monitoring

Thermal Treatment Unit Operation Summary 2007 - 2010

5,160 1434 27.8% 125,397	Cumulative: % TTU Operation:
5,160 1434 27.8% 125,397	Cumulative:
5,160 1434 27.8% 125,397	l otal Founds of Methane Removed:
5,160 1434 27.8%	
5,160 1434	% TTU Operation:
5,160	Total Hours Operated:
	Total Hours:
	Current Year 2010
202	Total Pounds of VOCs Removed:
1,802,161	Total Pounds of Methane Removed:
43.6%	% TTU Operation:
14,292	Total TTU Hours Operated:
32,808	Total TTU Hours:
	Historical through 2009 (TTU only):
7/23/2010 14:30	Last Reading Date/Time:
4/4/2006	TTU Start Date:
6/4/2001	Treatment System Start Date:
	TREATMENT SYSTEM OPERATION SUMMARY

4,083	125,397	Pounds of Methane Removed (2010)
8,736	455,507	Pounds of Methane Removed (2009)
5,622	293,169	Pounds of Methane Removed (2008)
10,374	540,920	Pounds of Methane Removed (2007)
Pounds/week	Removed	
	Total Pounds	

EW-35	Area D	VF-4	EW-34	EW-33	EW-32	EW-31	Area F	EP-36	Area E	Location	EXTRACTION SYSTEM (2010)
25.9		48	35.9	35.1	38.3	33.5		35		Last Instantaneous Methane Reading (%)	STEM (2010)
0		ω	24	20	13	4		19		Last Instantaneous Flow Rate Reading (scfm)	
91.7		84.9	508.2	414.1	293.7	79.0		392.2		Current Methane Removal Rate (lbs/day)	
28.0		28.0	28.0	28.0	26.9	28.0		28.0		2010 % Operation	
5562		8267	34403	21338	19059	7794		25903		2010 Methane Removed (Lbs)	

- Notes:
 1. TTU shut down from 3/19 thru 4/6 to allow LFG rebound.
 2. TTU O&M performed from on 4/20-21
 3. TTU shut down from 4/30 thru 5/11 to allow LFG rebound.

OPERABLE UNIT CARBON TETRACHLORIDE PLUME A-AQUIFER REMEDIAL ACTION

STATUS - August 17, 2010

FIELD WORK

- Final RA Work Plan/RD (Appendix A A-Aquifer) complete August 28
- Installation and development of wells at Areas 1A and 1B complete January 16
- Installation of process equipment at Area 1A complete July 10.
- Baseline sampling at Area 1A complete August 12.
- Start-up testing at Area 1A complete September 4.
- Installation and development of wells at Area 1C complete September 4
- Substrate injection at Area 1A initiated September 14.
- Substrate injection at Area 1A completed October 8.
- Groundwater recirculation at Area 1A completed November 12
- Installation of process equipment at Area 1B complete January 6.
- Installation and development of new well at Area 1C complete January 29
- Start-up testing at Area 1B complete February 26.
- Substrate injection at Area 1B initiated March 2.
- Installation and development of wells at Areas 2A and 2B complete March 23
- Substrate injection at Area 1B completed May 6.
- Groundwater recirculation at Area 1B completed June 16
- Issued technical memorandum for post-treatment and long-term monitoring at Deployment Area 1A June
- Baseline biological survey in FONR South Reserve April-June 2010.
- Installation of process equipment at Area 1C complete July 28.
- Final RAWP Appendix B Upper 180-Foot Aquifer July 16.
- Draft Final RAWP Appendix C Lower 180-Foot Aquifer August 2

SCHEDULE

- Subsequent quarterly monitoring for EISB pilot study conducted under Groundwater Monitoring Program
- Groundwater monitoring ongoing at Area 1B. (Extended 1 month for preliminary guidance)
- Substrate injection at Area 1C initiated August 2.12
- Installation of process equipment at Area 2A ongoing.
- Installation of extraction well in Upper 180-Foot Aquifer complete. Conducting well development

DATA (Preliminary)

Preliminary EISB data for Area 1B.

PROBLEMS/CHANGES

- FWV TII-142 issued to provide analytical requirements for methods not included in the CDQMP (metabolic acids [EPA 300.0M], dissolved gases [RSK-175], and total heterotrophic anaerobic bacteria [SM9215B]).
- both extraction wells, but not inject substrate into the injection well. injection well IW-BW-94-A do not have detectable concentrations of carbon tetrachloride. Plans are to operate Analytical data from grab samples at Area 1B indicate that extraction wells EW-BW-95-A and EW-BW-98-A and
- not expected to impact EISB or monitoring activities. was above the bentonite seal and approximately 20 feet below ground surface. Auger was grouted in place and is During installation of extraction well EW-BW-143-A, the auger ceased and broke below ground surface. Auger
- Following installation of extraction well EW-BW-142-A the well was driven over. The well was video logged and a failure in the well casing was observed at approximately 8 feet bgs. Well repair completed March 4.
- propionate, acetate, etc.) and carbohydrates proven to enhance reductive dechlorination better than plain sodium For Area 1C, a new formulation of substrate will be used that includes a mixture of fatty acids (lactate,

		į
	ţ	Ц
	í	•

carbon tetrachloride chloroform dichloromethane chloromethane trichloroethene toluene	lactate propionate acetate	methane ethane	dissolved iron manganese arsenic	sulfate ortho-phosphate	nitrate	turbidity temperture	dissolved oxygen oxidation reduction	alkalinity (CaCO ₃ total) pH	well flowrate (operating)	Sample ID Well Type Date
hloride ane le			-	ate	!		dissolved oxygen oxidation reduction potential	;O₃ total)	operating)	
8260B 8260B 8260B 8260B 8260B 8260B	300.0M 300.0M 300.0M	RSK 175 ^d RSK 175 ^d	6010B 6010B 6010B	300.0	300.0	meter ^c meter ^c	meter ^c meter ^c	HACH ⁶ meter ^c		:
.391 hây 1.60 0'.5> 1.60 0'.5> 1.60 0'.75 1.60 0'.75	<100 µg/L <100 µg/L		<200 μg/L <10 μg/L	36100(36100) Light	5880(5870) µg/L <100(<100) µg/L	13 NTU 17.6 °C	9.18 ppm 230 mV 67.6 mS/cm	114 mg/L 6.55	NA	MW-BW-53-A monitoring baseline 2/4/2010
						17 NTU 17.2 °C	9.18 ppm 210 mV 56.8 mS/cm	96 mg/L 6,55	NA	MW-BW-53-A monitoring Week 0 3/3/2010
1,6 Jgh 1,0 O.5> 1,0 Jgh 1,0 J			אפור 200 אפולר און 10 אפולר און און און אפון אפון אפון אפון אפון אפו	27200(27200) µg/L	5670(5680) µg/L <100(<100) µg/L	11 NTU 17.9 °C	9.2 ppm 202 mV 63.0 mS/cm	110 mg/L 6,50	NA	MW-BW-53-A monitoring Week 1 3/10/2010
						9 NTU 17.9 °C	9.3 ppm 142 mV 57.1 mS/cm	95 mg/L 6,50	NA	MW-BW-53-A monitoring Week 2 3/17/2010
1.7 µg/L 0.26.J µg/L <5.0 µg/L <1.0 µg/L 0.53 µg/L	-		<10 µg/.	26300(26200) µg/L	6460(6470) µg/L <100(<100) µg/L	14 NTU 18.5°C	8.3 ppm 144 mV 56.1 mS/cm	90 mg/L 6.62	NA	MW-BW-53-A monitoring Week 3 3/24/2010
1.9 lgđ 0,32J lgđ <5.0 lgđ <1.0 lgđ 0.67 lgđ			<10 µg/L	23300 ндЛ	6220 μց/ւ <100 μց/ւ	8 NTU 18.5°C	10.17 ppm 160 mV 56.3 mS/cm	95 mg/L 6.54	NA	MW-BW-53-A monitoring Week 4 3/31/2010
2.0 lgđ 0.30J lgđ <5.0 lgđ <1.0 lgđ 0.58 lgđ	<100 μg/L <100 μg/L		<10 µg/L		7280 կց/Լ <100 կց/Լ	10 NTU 19,5 °C	11.62 ppm 127 mV 56.3 mS/cm	72 mg/L 6,58	NA	MW-BW-53-A monitoring Week 5 4/7/2010
1.5 lgit 0.21J lgit <5.0 lgit <1.0 lgit 0.25J lgit			<10 µg/L	28000 µg/L	8020 µg/L <100 µg/L	9 NTU 18.8 °C	10.05 ppm 121 mV 58.7 mS/cm	6.59	NA	MW-BW-53-A monitoring Week 6 4/14/2010
0.36.J μρί. 0.36.J μρί. <5.0 μρί. μρί. 0.79 μρί.			<10 µg/L	24700 µg/L	6460 μg/L <100 μg/L	11 NTU 17.9 °C	9.36 ppm 140 mV 57.7 mS/cm	93 mg/L 6.58	NA	MW-BW-53-A monitoring Week 7 4/21/2010

carbon tetrachloride chloroform dichloromethane chloromethane trichloroethene toluene	lactate propionate acetate	arsenic methane ethane	ortho-phosphate dissolved iron manganese	nitrate nitrite sulfate	turbidity	dissolved oxygen oxidation reduction potential	alkalinity (CaCO ₃ total) pH	well flowrate (operating)	Sample ID Well Type Date
8260B 8260B 8260B 8260B 8260B 8260B 8260B	300.0M 300.0M	RSK 175 ^d RSK 175 ^d	300,0 6010B 6010B	300.0 300.0 300.0	meter ^e	meter ^r Intial meter ^r	HACH ⁶ meter ^c		мецюи
2.0 μφί. 0.43J μφί. <5.0 μφί. <1.0 μφί. 0.91 μφί.	<100 hây <100 hây <100 hây	7 C P81	<200 µg/L	6140 μg/L <100 μg/L 25800 μg/L	11 NTU 18.6°C	9.69 ppm 61 mV 62.0 mS/cm	96 mg/L 6,59	NA	MW-BW-53-A monitoring Week 8 4/28/2010
				## ## ## ## ## ## ## ## ## ## ## ## ##	22 NTU 18.4 °C	10.61 ppm 74 mV 54.3 mS/cm	111 mg/L 6.59	NA	MW-BW-53-A monitoring Week 9 5/5/2010
					13 NTU 18.1 °C	7.6 ppm 96 mV 60.1 mS/cm	62 mg/L 6.61	NA	MW-BW-53-A monitoring Week 10 5/12/2010
				The state of the s	14 NTU 18.8 °C	7.09 ppm 123 mV 57.6 mS/cm	63 mg/L 6,61	NA	MW-BW-53-A monitoring Week 11 5/19/2010
			o*	1	160 NTU 18.8 °C	9.4 ppm 75 mV 60.4 mS/cm	84 mg/L 6.53	NA	MW-BW-53-A monitoring Week 12 5/26/2010
2,1 μg/. 0,34,1 μg/. <5,0 μg/. <1,0 μg/. 0,7 μg/.			<200 µg/L	7600 µg/L <100 µg/L 24700 µg/L	8 NTU 18.6 °C	8.45 ppm 150 mV 60.3 mS/cm	90 mg/L 6.60	NA	MW-BW-53-A monitoring Week 13 6/2/2010
					5 NTU 18.4 °C	7.2 ppm 113 mV 59.7 mS/cm	55 mg/L 6.57	NA	MW-BW-53-A monitoring Week 14 6/9/2010
					56 NTU 19.9 °C	76 mV 67.0 mS/cm	91 mg/L 6.50	NA	MW-BW-53-A monitoring Week 15 6/16/2010
2 μg/L 0.32J μg/L <5.0 μg/L <1.0 μg/L 0.62 μg/L	<100 hây <100 hây <100 hây		<200 µg/L <10 µg/L	7840 µg/. <100 µg/. 25300 µg/.	37 NTU 19 °C	159 mV 69.1 mS/cm	84 mg/L 6,60	NA	MW-BW-53-A monitoring Week 17 6/30/2010
		s and second			28 NTU 17.6 °C	191 mV 77.0 mS/cm	85 mg/L 6.47	NA	MW-BW-53-A monitoring Week 21 7/28/2010

carbon tetrachloride chloroform dichloromethane chloromethane trichloromethane trichloromethene methyl terbutyl ether acetone 2-butanone carbon disuffide	methane ethane lactate propionate acetate	nitrate nitrite sulfate ortho-phosphate dissolved iron manganese arsenic	alkalinity (CaCO ₃ total) pH dissolved oxygen oxidation reduction potential conductivity turbidity temperture	Sample ID Well Type Date well flowrate (operating)
8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	RSK 175 ^d 300.0M 300.0M 300.0M	300.0 300.0 300.0 300.0 6010B 6010B 6010B	HACH ^b meter ^c meter ^c meter ^c meter ^c meter ^c	
7/64 C49.0 7/64 0.1> 7/64 0.1> 7/64 0.5> 7/64 0.1>	100 μg/L <100 μg/L	7330 µg/L <100 µg/L 37900 µg/L <500 µg/L 40.9J µg/L <10 µg/L	95 mg/L 6.57 8.77 ppm 145 mV 64.2 mS/cm 63 NTU 17.4 °C	EW-BW-97-A extraction baseline 1/28/2010
			75 mg/L 6.51 9.68 ppm 185 mV 61 mS/cm 9 NTU 17.4 °C	EW-BW-97-A extraction Week 0 3/3/2010
			78 mg/L 6.50 9.66 ppm 173 mV 63.6 mS/cm 13 NTU 17.5 °C	EW-BW-97-A extraction Week 1 3/10/2010
			76 mg/L 6.42 9.55 ppm 111 mV 62.6 mS/cm 25 NTU 17.5 °C	EW-BW-97-A extraction Week 2 3/17/2010
			71 mg/L 6.57 7.52 ppm 136 mV 63.5 mS/cm 27 NTU 17.8 °C	EW-BW-97-A extraction week 3 3/24/2010
1.9 μg/L 0.361 μg/L <5.0 μg/L <1.0 μg/L 0.64 μg/L 0.921 μg/L		7940 μg/L <100 μg/L 32500 μg/L <200 μg/L <10 μg/L <10 μg/L	72 mg/L 6.50 9.3 ppm 178 mV 62.4 mS/cm 20 NTU 17.9 °C	EW-BW-97-A extraction Week 4 3/31/2010 5.9
		**************************************	72 mg/L 6.48 11.21 ppm 175 mV 61.4 mS/cm 19 NTU 17.9 °C	EW-BW-97-A extraction Week 5 477/2010 5.9
0.42J μg/L 0.42J μg/L <5.0 μg/L <1.0 μg/L 0.53 μg/L 1.1 μg/L		7950 μg/L <100 μg/L 29900 μg/L <200 μg/L <10 μg/L <10 μg/L	69 mg/L 6.50 9.81 ppm 147 mV 61.6 mS/cm 25 NTU 17.7 °C	EW-BW-97-A extraction Week 6 4/14/2010
		14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 mg/L 6.57 8.05 ppm 1.55 mV 61.5 mS/cm 6 NTU 17.5 °C	EW-BW-97-A extraction Week 7 4/21/2010 5.2
0.47J Hg/L <5.0 Hg/L <1.0 Hg/L 0.59 Hg/L 1.5 Hg/L		7840 µg/L <100 µg/L 31600 µg/L <200 µg/L <10 µg/L <10 µg/L	71 mg/L 6.48 10.96 ppm 19.8 mV 62.5 mS/cm 120 NTU 17.5 °C	EW-BW-97-A extraction Week 8 4/28/2010 5.6

		EW-BW-97-0	FW-RW-97-A	EW-BW-97-A	EW-BW-97-A	EW-BW-97-A	EW-BW-97-A	EW-BW-97-A	EW-BW-97-A	EW-BW-9/-A
Sample 10		extraction	extraction	extraction	extraction	extraction	extraction	extraction	extraction	extraction
well Type		Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 17	Week 21
Date		5/5/2010	5/12/2010	5/19/2010	5/26/2010	6/2/2010	6/9/2010	6/16/2010	6/30/2010	7/28/2010
Il di contino		£ 7	4.6	5.9	2.6	2.2	5.3	3.3	0.0	0.0
well flowrate (operating)		5.7	4.0	0.0	21.0					
alkalinity (CaCO, total)	HACH	65 mg/L	67 mg/L	83 mg/L	95 mg/L	110 mg/L	123 mg/L	129 mg/L	141 mg/L	124 mg/L
	meter ^c	6.54	6,60	6.64	6.73	6.67	6.73	6.50	6.50	6.64
dissolved oxween	meter	10.27 ppm	6.89 ppm	5.55 ppm	3.67 ppm	3.43 ppm	2.92 ppm	6.3 ppm	2.15 ppm	0 ppm
uidation moduration potential	meter	128 mV	56 mV	71 mV	3 mV	-45 mV	-32 mV	-71 mV	-110 mV	-66 mV
OXIDADON FEDURACION POSSIBILITA	motor ^c	53.5 mS/cm	65.5 mS/cm	64 mS/cm	69.7 mS/cm	71.3 mS/cm	74.5 mS/cm	78 mS/cm	97.1 mS/cm	108 mS/cm
conductivity	Herel	OF NELL	30 NTI	NTI.	11 NTI	5 NTI	45 NTU	253 NTU	16 NTU	163 NTU
turbidity	meter	25 NIO	26 Ni O		3 2	3	10 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101 0	17 a °C	20.8°C
temperture	meter	17.5 °C	17.6 °C	17.9 °C	19 (16,6 C	10.7			10:0
nitrato	300.0	The second second second	the second section of	Care The Cash State of		6570 μg/L	The state of the s	1	4360 µg/∟	180
nitrite	300.0					<100 µg/L			67.1J µg/L	
sulfate	300.0					7/611 0096Z			1.64 DOCO7	
ortho-phosphate	300.0						-		1960 uo/L	
dissolved iron	6010B					512 μg/L			1750 μg/L	
arsenic	6010B			1		<10 µg/L			2.00 mg/L	
nethane	RSK 175 ^d									
ethane	RSK 175 ^d								*	
actate	300.0M							-	-	
propionate acetate	300.0M	1								
	0000	A company of the Second	A COLUMN TO THE PARTY OF THE PA	· ·	186	1.5 µg/L			0.67 μg/L	
carbon tetrachioride	8260B					0.32J μg/L	- 20		<0.5 µg/L	
dichioronii	8250R					<5.0 µg/L			<5.0 µg/L	
chloromethane	8260B					<1.0 µg/L			<1.0 µg/L	
trichloroethene	8260B					0.46J µg/L			0.49J μg/L	
methyi tert-butyl ether	8260B					1.6 µg/L			1.0J µg/L	
acetone	8260B					10 µg/L			1/84 F21	7
z-butanone carbon disulfide	8260B								0.45J µg/L	

carbon tetrachloride chloroform dichloromethane chloromethane acetone 2-butanone trichloroethene carbon disulfide	lactate propionate acetate	methane	dissolved iron manganese arsenic	sulfate ortho-phosphate	nitrate nitrite	temperture	turbidity	conductivity	oxidation reduction potential	dissolved oxygen	alkalinity (CaCO ₃ total)		well flowrate (operating)	Date	Well Type	Sample ID	
8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	300.0M 300.0M 300.0M	RSK 175 ^d	6010B 6010B	300.0	300.0 300.0	meter	meter	meter	meter	meter	nato.	наснь					
7/64 fe2°0 7/64 tl 7/64 0'5> 7/64 5'0> 7/64 2'1	<100 μg/L <100 μg/L	<2.0 μg/L <2.0 μg/L	<200 μg/L 6.25J μg/L <10 μg/L	44400(44300) μg/L <500(<500) μg/L	18400(18400) µg/L <100(<100) µg/L	17.7 °C	48 NTU	93.5 mS/cm	189 mV	9.09 ppm	8 A6	75 mg/l	NA	1/28/2010	extraction baseline	EW-BW-100-A	
						17.6 C	A NTU	73.1 mS/cm	176 mV	9.05 ppm	8 55 iigir	64 mg/l	7.0	3/3/2010	Week 0	EW-BW-100-A	
	- 1			r. E	4	17.9	31 NTU	71.6 mS/cm	179 mV	9.46 ppm	6.53	70 ma/L	7.2	3/10/2010	Week 1	EW-BW-100-A	
						17.3 0	12 NTO	70.5 mS/cm	137 mV	9.51 ppm	6.51	68 ma/L	7.3	3/17/2010	Week 2	EW-BW-100-A	
1.4 μg/L 0.20, μg/L <5.0 μg/L <1.0 μg/L 0.57 μg/L			<10 µg/L	2000 mg/l	12300 μg/L <100 μg/L 33700 μg/l	17.3	23 NIO	72 mS/cm	140 mV	7.56 ppm	6,64	67 mg/L	7.4	3/24/2010	Week 3	EW-BW-100-A	
				The state of the s	e de	11:0	17 6°C	71.4 mS/cm	67 mV	8.43 ppm		75 mg/L	7.2	3/31/2010	Week 4	EW-BW-100-A	
1.6 µg/L 0.26.1 µg/L <5.0 µg/L <1.0 µg/L 0.76 µg/L			261 μg/L <10 μg/L	<2000 mg/L	11400 μg/L <100 μg/L 32600 μg/L	10,0	18 0 °C	/4.8 ms/cm	-26 mV	9.05 ppm	6.64	85 mg/L	6,3	4/7/2010	Week 5	EW-BW-100-A extraction	
			!				182°C	81.1 ms/aii	42 mV	7.36 ppm	6.70	97 mg/L	6.3	4/14/2010	Week 6	EW-BW-100-A extraction	
nde e					•		17.5°C	48 NTH	41 mV	5.84 ppm	6.75	107 mg/L	6.2	4)21/2010	Week 7	EW-BW-100-A extraction	
1.5 μg/L 0.30.1 μg/L 5.0 μg/L <1.0 μg/L 11 μg/L 0.87 μg/L 0.87 μg/L			1310 μg/L <10 μg/L	118J µg/L	7810 µg/L <100 µg/L 31100 µg/L		18.6 °C	44 NTH	47 mV	7.07 ppm	6,80	120 mg/L	2.8	4/20/2010	Week 8	EW-BW-100-A extraction	

	2
ī	ŕ
ì	
	=
5	2
3	•

carbon tetrachloride chloroform dichloromethane chloromethane acetone 2-butanone trichloroethene carbon distilfide	methane ethane lactate propionate acetate	nitrate nitrite sulfate ortho-phosphate dissolved iron manganese	conductivity turbidity temperture	pH dissolved oxygen oxidation reduction potential	well flowrate (operating) alkalinity (CaCO ₃ total)	Sample ID Well Type Date
8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	RSK 175 ^d RSK 175 ^d 300.0M 300.0M 300.0M	300.0 300.0 300.0 300.0 300.0 6010B 6010B	meter ^c meter ^c		(g)	
			74.2 mS/cm 36 NTU 19.9 °C	6.71 2.68 ppm -53 mV	2.9 137 mg/L	EW-BW-100-A extraction Week 9 5/5/2010
			90.6 mS/cm 32 NTU 20.5 °C	6.76 0.94 ppm -102 mV	0.0 140 mg/L	EW-BW-100-A extraction Week 10 5/12/2010
			86.5 mS/cm 16 NTU 20.7 °C	6.67 0.95 ppm -147 mV	0.0 106 mg/L	EW-BW-100-A extraction Week 11 5/19/2010
	7		87.5 mS/cm 130 NTU 20.0 °C	1.34 ppm -124 mV	0.0 98 mg/L	EW-BW-100-A extraction Week 12 5/26/2010
0.57 μց/L <0.5 μց/L <1.0 μց/L		12500(12600) μg/L <100(<100) μg/L 49300(49200) μg/L 108.J(<200) μg/L 207(213) μg/L <10(10) μg/L	4 NTU 20.4 °C	0.67 ppm -112 mV	0.0 92 mg/L	EW-BW-100-A extraction Week 13 6/2/2010
	: :		5 NTU 18.4 °C	3.26 ppm -74 mV	0.0 87 mg/L	EW-BW-100-A extraction Week 14 6/9/2010
			36 NTU 18.9 °C	7.9 ppm -75 mV	0.0 82 mg/L	EW-BW-100-A extraction Week 15 6/16/2010
0.73 μg/L <0.5 μg/L <5.0 μg/L <1.0 μg/L		13800[13800] μg/L <100(<100) μg/L 49200[49100] μg/L 113 μg/L 113 μg/L <10 μg/L	18 NTU	5.65 ppm -47 mV	0.0 100 mg/L	EW-BW-100-A extraction Week 17 6/30/2010
			24 NTU 24.0 °C	4.73 ppm -14 mV	0.0 66 mg/L	EW-BW-100-A extraction Week 21 7/28/2010

Sample ID		EW-BW-101-A	EW-BW-101-A	EW-BW-101-A	EW-BW-101-A	EW-BW-101-A	EW-BW-101-A	EW-BW-101-A	EW-BW-101-A	EW-BW-101-A
Wall Type		extraction	extraction	extraction	extraction	extraction	extraction	extraction	extraction	extraction
term of the		Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15	Week 17	Week 21
Date		5/5/2010	5/12/2010	5/19/2010	5/26/2010	6/2/2010	6/9/2010	6/16/2010	6/30/2010	01.07/97//
		27	4.0	£ 7	22	0+	7.0	2.3	0.0	0.0
well flowrate (operating)		5,5	4.6	5./	2.2	Ç	7.0	!!		
alkalinity (CaCO, total)	HACH	220 mg/L	230 mg/L	248 mg/L	258 mg/L	300 mg/L	282 mg/L	284 mg/L	415 mg/L	415 mg/L
	meter	6.61	6.62	6.60	6.60	6,56	6,58	6.30	6.30	6.47
dissolved owner	meter ^c	2.48 ppm	2.32 ppm	2.05 ppm	1.62 ppm	0 ppm	2,5 ppm	5 ppm	0.73 ppm	3,85 ppm
evidation reduction retential	meter	-65 mV	40 mV	-56 mV	-107 mV	-139 mV	-68 mV	-87 mV	-226 mV	-143 mV
	meterc	91.2 mS/cm	117 mS/cm	115 mS/cm	119 mS/cm	127 mS/cm	127 mS/cm	140 mS/cm	183 mS/cm	173 mS/cm
trucki dik.	meterc	10 NTU	12 NTU	10 NTU	UTN 86	24 NTU	3 NTU	58 NTU	137 NTU	88 NTU
formation	meter ^c	18.8 °C	18.7 °C	18.3 °C	18.9 °C	21.5 °C	18.4 °C	19.4 °C	19.1 °C	26 °C
nitrate	300.0	No. of the Control of	The state of the state of		17 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<100 µg/L		1 1 1	<100 jug/L	
nitrite	300.0	1		\$ 7 \$ 7	. *.	49900 :::g/l			2200 mg/L	
sulfate	300.0					יישייט יישיר			Proof Page	-
ortho-phosphate	300.0				_	1080 110/1			4750 µg/L	
dissolved iron	6010B		l ýs			4170 µg/L		. a galance	9270 µg/L	
manganese	80100			ĝ.		<10 µg/L			12.5 µg/L	
arsenic	5010B	· ·	<i>*</i>				•			
methane	707 170							W.		
ethane	RSK 175"					, +	Total and	•		
actate	300.0M	<hr/>						1	<100 µg/L	
propionate	300.0M	_^_							319000 119/1	
acetate	300.0M	^					100		70.	
		The second second		计二类等 法附上的		0.55 ug/L			<0.5 µg/L	1000
carbon tetrachionde	82608	周州 · 人名英格				<0.5 µg/L			<0.5 µg/L	
chloroform	803508					<5.0 µg/L			0,81J µg/L	
dichloromethane	02000	d d				<1.0 µg/L		-	<1.0 µg/L	
chloromethane	82608					0.52 µg/L		1	0.58 µg/L	
Holloconerie	82608					24 µg/L			21 µg/L	
2-butanone	8260B		e G			66 µg/L			- 1/gμ 85	
carbon disulfide	8260B					1.3 µg/L			0.31J שט/L 1.5 השיר	
methyl tert-butyl ether	8260B				No. of the Control of	i i	The second secon		;	

Carbon Tetrachloride Concentration (ug/L)

Change in Carbon Tetrachloride Concentration **Over Time**

OPERABLE UNIT 1 OFF-SITE GROUNDWATER EXTRACTION PILOT STUDY

STATUS - August 17, 2010

FIELD WORK

- Well construction complete December 21, 2007
- Draft Final OU1 Pilot Study Work Plan distributed April 22, 2008
- Baseline sampling and analysis June 14, 2008
- System construction completed July 16, 2008
- Monitoring well (City of Marina) installation July 28, 2008
- System start-up August 5, 2008
- Extraction Well EW-OU1-92-A shut off December 11, 2008
- Field Work Variance (FWV) issued to document system shut-off February 16, 2009
- Groundwater extraction system shut off and rebound testing initiated February 17, 2009
- System restarted (EW-OU1-93-A operating) April 7, 2009
- Second rebound study initiated July 13, 2009 and completed March 22, 2010
- Carbon changeout of lead vessel as part of system mothballing June 3, 2010
- System mothballing complete June 7, 2010
- Quarterly sampling of monitoring and extraction wells June 22, 2010.
- January to March 2010 Quarterly Report issued August 6, 2010

SCHEDULE

- April to June 2010 Quarterly Report to be issued September 2010
- Issue Technical Memorandum with monitoring wells proposed for long-term monitoring August 2010.

DATA (Preliminary)

None

PROBLEMS/CHANGES

None

HTW BCT Meeting Agenda August 17, 2010 at 1:30 PM

Item	Action	Comment
OU1 Groundwater Remediation	Status Update	HGL
OU1 Off-Site	Status Update	
OU2 and 2/12 Treatment Systems	Status Update	
Other Groundwater Issues Storm water disposal	Status Update	
OUCTP	Status Update	
OU2 Landfill	Status Update	
Community Relations	Status Update	
FFA Schedule	Status Update	
Calendar Update	Update	

HydroGeoLogic, Inc. Agenda & Notes

Fort Ord Hazardous and Toxic Waste Base Closure Team (BCT) Meeting 17 August 2010, 1:30 PM Monterey, California

1. Groundwater Remediation System Update

The Northwest Treatment System (NWTS) operated without interruption during July but went down for undetermined reasons during the first week of August (estimate that it went off-line on Thursday, 05 of total volatile organic compounds. 55.0 gallons per minute (gpm). Thus far in 2010, the NWTS has removed approximately 0.3 pounds of trichloroethene (TCE). Since system start-up in 2006, the NWTS has removed approximately 4.8 pounds the northwest infiltration trenches. From 05 July through 26 July, 2010 the average pumping rate was intermittently between 05 July and 19 July. During this period, all treated water was recharged through August). The NWTS was restored to service on Monday 09 August. The injection pump was off-line

down as described above. The average pumping rate was approximately 1.4 gpm. Extraction well EW-OU1-60-A operated continuously during July and into August until the NWTS shut

OU1-87-A and EW-OU1-71-A. TCE remained stable at MW-OU1-87-A (7.4 μ g/L versus 7.2 μ g/L in March) but declined from 8.5 μ g/L to 6.5 μ g/L at EW-OU1-71-A. Chloroform (not shown in Table 1) was received and are presented in Table 1. Validated analytical results will be presented when available. The treatment system and selected extraction wells were sampled on 21 June 2010. Well EW-OUI-60-A was operating on that day and a sample was collected. Preliminary laboratory analytical results have been $\mu g/L$, respectively. Chloroform is commonly detected throughout the OU-1 area at similar concentrations. The cleanup target for chloroform is 2.0 $\mu g/L$. detected at two wells (MW-OU1-87-A and EW-OU1-71-A) at concentrations of 0.15 J µg/L and 0.14 J illustrated in Table 1, TCE concentrations remained below 1 µg/L at all extraction wells except MW-

below the reporting limits: 2-butanone (MEK) at MW-OU1-57-A (0.49 J µg/L) and TCE at MW-OU1-58the preliminary results and showed "non-detect" for all tested compounds except for two estimated values designated as replacement samples and were sampled on 03 May. The validated results were identical to in January as discussed in previous meetings. Wells MW-OU1-57-A and MW-OU1-58-A were Extraction wells EW-OU1-62-A and EW-OU1-63-A on the northwest boundary were taken out of service A $(0.34 \text{ J } \mu\text{g/L})$. These results are consistent with past sampling along the northwest boundary

2. Long-Term Monitoring Update

values. The preliminary draft figure showing TCE concentration contours for the 2010 First Quarter Groundwater Monitoring Report has been finalized and is attached for reference (Figure 6 from the 2010 MW-OU1-61-A along the northwest boundary. This omission has been corrected in the attached version Figure 7) distributed in recent meeting materials inadvertently omitted the 10 μg/L contour around well First Quarter Groundwater Monitoring Report). The preliminary version of this figure (numbered as The validated data for the March 2010 sampling event showed no change from previously reported

The next groundwater sampling event is scheduled for September 2010

3. Report Submittals

Monitoring Report was submitted on 30 July. Table 2 summarizes the status of scheduled reports through 2010. The 2010 First Quarter Groundwater The Final 2009 Annual and Fourth Quarter Groundwater

the Fort Ord Community Action Group on the Draft version. Monitoring Report was submitted on 05 August and incorporated responses to comments received from

4. Other 4a) IW-OUI-10-A System Expansion

pumping from well IW-OU1-10-A. The IW-OU1-10-A Design Technical Memorandum is tentatively scheduled for submittal in late August or early September. Construction will begin after the agencies be completed within one month of startup. review the submittal (two - three weeks) and comment response is completed. We expect construction to HGL is preparing subcontract documents to support the upcoming remediation expansion to include

4b) Previous Meeting Minutes

now considered "Final". No comments were received on the Draft June 2010 BCT OU-1 meeting minutes and these minutes are

There are no other planned agenda items

	6/10/2010	3/22/2010	12/14/2009	9/15/2009	6/11/2009	3/9/2009	1/26/2009	12/1/2008	9/29/2008	7/21/2008	5/27/2008	3/18/2008	1/18/2008	11/9/2007		6/10/2010	3/22/2010	12/14/2009	9/15/2009	6/11/2009	3/9/2009	1/26/2009	12/1/2008	9/29/2008	7/21/2008	5/27/2008	3/18/2008	1/18/2008	11/9/2007			Sample Date				
Italics (if use	0.67	0.67	0.67	0.80	0.71	0.62	0.63	0.67	0.99	0.80	0.88	1.20	1.20	1.9		7.4	7.2	6.9	6.8	6.9	5.8	5.9	5.8	9.3 J	9.1	9.7	11	11	16		MW-87	FONR Ext				
d) indicate da	0.53	0.79	0.65	1.00	1.10	1.20	1.20	1.30	1.60	1.50	2.10	1.50	1.40	1.6		6.5	8.5	7.5	9.4	11	9.9	10	11	15	14	18	14	11	13		EW-71	traction Well (Began Operati		TCE and C		
Italics (if used) indicate data not yet validated	0.14	N	0.10		0.30	0.29	0.29	0.33	0.54	0.52	0.26	0.74	1.00	2.3		0.90	0.62	0.84	1.7	2.4	2.1	2.2	2.6	J 4.3	4.4	2.5	6.7	8.9	19		MW-85	FONR Extraction Well (listed from south to north) Began Operation October 2007	BCT N	is-1,2-DCE i		
lated	J ND	ND	J not sampled		J 0.13	J 0.13	J 0.12	0.21	0.30	0.37	0.74	0.63	1.20	1.70	i i i i i i i i i i i i i i i i i i i	0.40	0.55	not sampled	0.78	1.5	1.2	1.2	1.6	J 2.9	3.4	6.1	5.8	8.2	14		MW-46AD	ith to north) 07	leeting for F	n OU-1 FON		
	inactive	inactive	not sampled	J ND	J ND	J ND	J	J	ND	ND	ND	ND	ND	ND	ci	J inactive	inactive	not sampled	ND	A	A	ND	ND	J ND	ND	ND	¥	A	ND		EW-63	Boundary	BCT Meeting for Former Fort Ord, at Monterey CA -	TCE and Cis-1,2-DCE in OU-1 FONR Groundwater Remediation Syst	Tal	
	ND	ND	inactive	inactive	ND	ND	ND	ND	A	ND	ND	ND	ND	N	cis-1,2-DCE (μg/L)	0.86	B	inactive	inactive	0.88	0.95	0.48	0.82	0.90 J	0.78	¥	0.29	N N	A	TCE (µg/L)	EW-60	Boundary Extraction Well (listed Began Operation July	rd, at Monte	er Remediati	Table 1	
Bold font inc	ND	ND	ND	0.03		A	AB	A	0.13	ND	ND	A	0.11	ND	()		0.90	0.94	1.1	1.7	0.86	0.78	0.91		1.4	1.8	1.5	1.2	1.7		EW-66		rey CA - Aug	ion System -]		
nt indicates concentration > ACL	inactive	inactive	J not sampled	J	J	A	ND	ND	ND N	N	ND	N	ND	Ä		inactive	inactive	not sampled	0.036	ND	ND	A	A	A A	Ä	A	N)	N	ND		EW-62	west	August 2010	em - Performance Monitoring		
ration > ACL	0.20		0.21	0.22		0.23				0.41	0.36	0.59	0.66	1.3		2.1	2.3	2.3	2.3	2.6	2.7	2.4	2.7	3.8 J	3.6	3.9	5.6	6.0	11		INFLUENT			Monitoring		
	J = 0.23		J 0.30					0.57		0.34	0.21	0.11	N N	AB	-						2	N		0.19	ND	N	N	N	N		MIDPOINT	NWIS				
	J ND	J 0.13 J		0.03	Y				0.12	S N	N N	N N	i Z	i							2	i i	J		ND	AD N	ND	A	ND		EFFLUENT	-				

Table 2
Current Deliverable Schedule
IPM / BCT Meeting for Former Fort Ord, Marina CA -August 2010

,	NA	Agency Comments
In Progress.	August-2010	Final Rebound Evaluation Report
	NA	Agency Comments
		Groundwater Monitoring Report
	February-2011	Final 2010 Annual and Third Quarter
	January-2011	Agency Comments
		Groundwater Monitoring Report
Sampling to be conducted in September.	November-2010	Draft 2010 Annual and Third Quarter
Annual Groundwater Monitoring Report.	+	
Comments to be addressed in Draft 2010	September-2010	Agency Comments
		Monitoring Report
Submitted 30 July 2010.	July 2010	2010 First Quarter Groundwater
FOCAG comments addressed.	NA	Agency Comments
		Groundwater Monitoring Report
Submitted 05 August 2010.	August-2010	Final 2009 Annual and Third Quarter
sample frequency - no other comments.		
Agencies approved changes to 2010	April-2010	Agency Comments
		Groundwater Monitoring Report
Submitted 08 February 2009.	February-2010	Draft 2009 Annual and Third Quarter
No Comment.	August-2009	Agency Comments
		Monitoring Report
Submitted 22 June 2009.	June-2009	First Quarter 2009 Groundwater
	NA	Agency Comments
		ng Report
	November-2010	Final 2007 Annual and Fourth Quarter
	October-2010	Agency Comments
		Groundwater Monitoring Report
In Progress.	August-2010	Draft 2007 Annual and Fourth Quarter
		Secondary Deliverables
	1	None Scheduled for 2010
		Primary Deliverables
(Bold font indicates submittal)	Submittal	
Status / Remarks	Scheduled	Deliverable

Bold denotes completed submittals.

